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Abstract

While remote sensing has made enormous progress over recent years and a variety of
sensors now deliver medium and high resolution data on an operational basis, a vast
majority of applications still rely on basic image processing concepts developed in the
early 70s: classification of single pixels in a multi-dimensional feature space. Although
the techniques are well developed and sophisticated variations include soft classifiers,
sub-pixel classifiers and spectral un-mixing techniques, it is argued that they do not
make use of spatial concepts. Looking at high-resolution images it is very likely that a
neighbouring pixel belongs to the same land cover class as the pixel under consideration.
Algorithms in physics or mechanical engineering developed over the last twenty years
successfully delineate objects based on context-information in an image on the basis of
texture or fractal dimension. With the advent of high-resolution satellite imagery, the in-
creasing use of airborne digital data and radar data the need for context-based algorithms
and object-oriented image processing is increasing. Recently available commercial prod-
ucts reflect this demand. In a case study, ‘traditional’ pixel based classification methods
and context-based methods are compared. Experiences are encouraging and it is hy-
pothesised that object-based image analysis will trigger new developments towards a full
integration of GIS and remote sensing functions. If the resulting objects prove to be
‘meaningful’, subsequent application specific analysis can take the attributes of these
objects into account. The meaning of object dimension is discussed with a special focus
on applications for environmental monitoring.

1. Introduction
The world in its complexity and manifold relationships cannot be grasped in full
depth. Creating models of the world or computer-based representations of its surface
poses a series of problems. In landscape ecology, there is growing awareness about
continuity of phenomena and discontinuities of scales. Forman (1995) described this
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ambiguity through the image of a person gradually sinking with a spaceship or bal-
loon. The human perception starts to discover pattern and mosaics abruptly. Many
mosaics are quasi-stable for a while, separated by rapid changes that represent the
“domain of scales”. Each domain exhibits a certain spatial pattern, which in turn is
produced by a certain causative mechanism or group of processes. This article does
not deal with landscape ecology but takes it as a starting point to look into different
image processing strategies. It will be argued that the suggested approach coincides
well with the human perception and the way we extract information from visual im-
pression. Our perception of an image’s content is mainly based on objects. Once
having perceived objects, we link them together by means of a complicated network
made up by experience and knowledge. This very step was hardly implemented in
image interpretation software. The image analysis presented here implies dealing
with and handling image semantics. In most cases, information important for the un-
derstanding of an image is not represented in single pixels but in meaningful image
objects and their mutual relations. Procedures for image object extraction which are
able to dissect images into sets of useful image objects are therefore a prerequisite
for the successful automation of image interpretation. Although segmentation is not
new (see Haralick et al. 1973), it rarely featured so far in image processing of re-
motely sensed data. Only a few of the existing approaches lead to qualitatively con-
vincing results while being robust and operational. One reason is that the segmenta-
tion of an image into a given number of regions is a problem with a huge number of
possible solutions. The high degrees of freedom must be reduced to a few which
satisfy the given requirements. A new approach is presented. Called “fractal net
evolution approach” (Baatz/Schäpe 2000), it could actually revolutionize image
processing of remotely sensed data.

2. Advances in Image Processing
With the advent of higher resolution image data the need for more efficient, more
accurate methods has grown more than ever. Despite increased resolutions the
problem of so-called mixed pixels still remains. Sensor systems have a specific in-
stantaneous field of view (IFOV) or ground-projected instantaneous field of view
(GIFOV) – to put it simply: a certain spatial resolution. Several targets of interest
are often found within one unit of GIFOV. Only a single category is assigned to
each pixel. But in fact one pixel could represent more than one target. To overcome
this problem certain methods have been developed as alternatives to the conven-
tional ‘hard’ classification techniques. In general they aim at the classification
within one pixel, thus termed sub-pixel classification.
Early attempts at sub-pixel analyses started when the first MSS data were available
back in the early seventies (Napelka & Hyde 1972).
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One method is the linear mixing model (LMM). Here we start from idealized,
pure signatures for a class, so-called end-members. The spectral reflectance of each
pixel is then assumed to be a linear combination of the spectra of these end-members
weighted by their respective areal proportions within the pixel (Ichoku & Karnielli
1996):

ri is the reflectance of the pixel in the ith band. aij is the reflectance of the jth compo-
nent of the pixel in the ith spectral band and xj denotes the proportion of the jth com-
ponent in the pixel. ei is the error term in the ith spectral band. The linear equation
above can be used to compute the proportion of xj. Spectra for the end-members are
taken from libraries or from the image itself. As a result, class fraction and residual
maps are created. This process of linear un-mixing shows some limitations (Ashton
& Schaum 1998):
•  End-member spectra should be as accurate as possible.
•  The surface component is assumed to be opaque so that photons interact with

only one component, otherwise non-linear modelling would be required and the
LMM would be rendered invalid.

Another family of methods that strive to improve accuracy of classification are those
using fuzzy sets. With this concept each pixel may have fuzzy membership with
more than one class expressed as the degree of its membership to each class (values
range between 0 and 1). Training data for fuzzy classification need not be homoge-
neous as is desirable for conventional hard classifiers. Throughout the classification
procedure one needs to assign known portions of mixing categories. Popular fuzzy
set based approaches are the fuzzy c-means clustering (FCM, v.a. Bezdek et al.
1984), the possibilistic c-means clustering (PCM, v. a. Krihnapuram & Keller 1996)
as well as the fuzzy supervised classification introduced by Wang (1990). The fuzzy
classifiers produce images showing the degree of membership of pixels to stated
categories. One caveat of the fuzzy set based methods might be:
•  The accuracy of fuzzy classification depends to a high degree on the complete

definition of training data sets. Foody (2000) remarks that untrained classes will
only display membership to trained classes, which can introduce a significant
bias to classification accuracy.

A third advanced method is the use of neural network classifiers borrowed from ar-
tificial intelligence research. Training data together with a known land-cover class
(the input layer) are fed into the neural network system (the hidden layer). The algo-
rithms inside the network try to match training data with the known class spectra
patterns and produce an output layer together with errors of non-matching neural

( ) i

n

j
jiji exar +=�

=1



558

21.02.02, Blaschke_et_al_engl200700.el.hsp.doc -  - 558

nodes. The procedure restarts trying to minimize errors. The process can be repeated
several times. For the classification of specific objects neural networks have proven
to be more accurate than conventional methods (Civico 1993; Foschi & Smith 1997;
Skidmore et al. 1997). Especially Skidmore et al critically discussed the use of neu-
ral network classification:
•  Accurate meaningful results require good training data sets; otherwise outputs

will not be very reliable.
•  The classification procedure needs the adjustment of various parameters, which

highly increases complexity of the whole system and seems to limit its useful-
ness.

•  Computational demands of neural network classification are strikingly high. Ef-
ficient computing could be realized on expensive, specialized parallel process-
ing machines.

None of the various pixel-based classification methods seems to really satisfy all the
needs for the production of reliable, robust and accurate results.

3. From Segmentation Algorithms to Operational Image Analysis

Segmentation
As stated above, the strong motivation to develop techniques for the extraction of
image objects stems from the fact that most image data exhibit a characteristic tex-
ture which is neglected in common classifications. The texture of an image can be
defined in terms of its smoothness or its coarseness. One field of image processing
in which the quantification of texture plays a crucial role is that of industrial vision.
These systems are used to assess the quality of products by measuring the texture of
their surface. Most methods are based on the statistical properties of an image as
well as the spectral or Fourier characteristics of airborne data, radar or VHR-satellite
data which are playing an increasing role in remote sensing. But how can neigh-
bourhood information across several spectral bands be included for a pixel-based
analysis? Several research groups tried to do this by using pre-defined boundaries
(‘per-parcel classification’ or ‘per-field classification’, see Janssen 1993, Aplin et al.
1999). Besides methodological questions one also has to ask what to do in case there
are no boundaries readily available or exactly those boundaries should be updated.
One solution is image segmentation. In many cases, image analysis leads to mean-
ingful objects only when the image is segmented in ‘homogenous’ areas (Gorte
1998, Molenaar 1998, Baatz & Schaepe 2000).

From most studies following a segmentation approach it is argued that image
segmentation is intuitively appealing. Human vision generally tends to divide im-
ages into homogeneous areas first, and characterises those areas more carefully later
(Gorte 1998). Following this hypothesis, it can be argued that by successfully di-
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viding an image into meaningful objects of the land surface, more intuitive features
will result. The problem is to define the term ‘meaningful objects’. As stated earlier,
nature hardly consists of hard boundaries but it is also not a true continuum. There
are clear, but sometimes soft, transitions in land cover. These transitions are also
subject to specific definitions and subsequently dependent on scale. Therefore, seg-
ments in an image will never represent meaningful objects at all scales, for any ap-
plication and, as will be argued later, for multi-resolution segmentation.

Edge-based segmentation
Edges are regarded as boundaries between image objects and they are located where
changes in values occur. There are various ways to delineate boundaries. A specific
approach is presented by Hoffman and Boehner (1999). They calculate a representa-
tiveness of each pixel for its neighbours. The image segmentation is based on the
representativeness values of each pixel. At first these values are calculated by a
harmonic analysis of the values for each spectral channel. The minima in the matrix
of representativeness – typically arranged in pixel-lineaments – represent spatial un-
steadiness in the digital numbers. For the image segmentation, the vectorized min-
ima of the representativeness delimit areas consisting of pixels with similar spectral
properties (spatial segments). A convergence index is combined with a single-flow
algorithm for the vectorization of the representativeness minima. A standardisation
is performed through the calculation of a convergence index for every pixel in a 3 x
3 window.

Region-based segmentation
Region growing algorithms cluster pixels starting with seed points and growing into
regions until a certain threshold is reached. This threshold is normally a homogene-
ity criterion or a combination of size and homogeneity. A region grows until no
more pixels can be attributed to any of the segments and new seeds are placed and
the process is repeated. This continues until the whole image is segmented. These
algorithms depend on a set of given seed points, but sometimes suffering from
lacking control over the break-off criterion for the growth of a region. Common to
operational applications are different types of texture segmentation algorithms. They
typically obey a two-stage scheme (Jain/Farrokhnia 1991, Mao/Jain 1992, Gorte
1998, Molenaar 1998, Hoffman et al. 1998):
1. In the modelling stage characteristic features are extracted from the textured in-

put image, including spatial frequencies (Jain/Farrokhnia 1991, Hoffman et al.
1998), Markov Random Field models (Mao & Jain 1992, Panfwani/Healey
1995), co-occurrence matrices (Haralick et al. 1973), wavelet coefficients
(Salari/Zing 1995), wave packets (Laine/Fan 1996) and fractal indices (Chaud-
huri/Sarkar 1995).
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2. In the optimisation stage features are grouped into homogeneous segments by
minimising an appropriate quality measure. This is most often achieved by a few
types of clustering cost functions (Jain/Farrokhnia 1991, Mao/Jain 1992,
Hoffman et al. 1998). A further possibility is the watershed transformation.

Also listed among the two-step approaches, the Markov Random Field (MRF)
method is worth mentioning in more detail. They classify a particular image into a
number of regions or classes. The image is modelled as a MRF and a Maximum a
posteriori (MAP) probability approach is used or classification. The problem is
posed as an objective function optimisation, which in this case is the a posteriori
probability of the classified image given the raw data which constitutes the likeli-
hood term, and the prior probability term, which due to the MRF assumption is
given by the Gibb's distribution.

Sometimes seen separately is the group of ‘split-and-merge’ algorithms. They
start by subdividing the image into squares of a fixed size, usually corresponding to
the resolution of a certain level in a quad tree. These leaves are then tested for ho-
mogeneity and heterogeneous leaves are subdivided into four levels while homoge-
neous leaves may be combined with three neighbours into one leaf on a higher level
etc.

Per-field or per-parcel classification
The per-field classification approach has shown improved results in some studies
(e.g. Lobo et al. 1996). The results are often easier to interpret than those of a per-
pixel classification. The results of the latter often appear speckled even if post-
classification smoothing is applied. ‘Field’ or ‘parcel’ refers to homogenous patches
of land (agricultural fields, gardens, urban structures or roads) which already exist
and are superimposed on the image. Some studies (e.g. Janssen 1993, Aplin et al.
1999) indicate that the methodology is positively contributing to the classification of
remote sensing imagery of high to medium geometric resolution. This classification
technique is especially applicable to agricultural fields. Distinct boundaries between
adjacent agricultural fields help to improve the classification due to the fact that
boundaries in an agricultural landscape are relatively stable while the cropping pat-
tern (also within the lots) changes often.
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Multi-resolution segmentation and object-based classification
Because an ‘ideal’ object scale does not exist, objects from different levels of seg-
mentation (spatially) and of different meanings (ecologically) have to be combined
for many applications. The human eye recognises large and small objects simultane-
ously but not across totally different dimensions. From a balloon for instance, the
impression of a landscape is dominated by the land use pattern such as the composi-
tion of fields, roads, ponds and built up areas. Closer to the ground, one starts to rec-
ognise small patterns such as single plants while simultaneously small scale pattern
loses importance or cannot be perceived anymore. In remote sensing, a single sensor
correlates highly with a specific range of scales. The detectability of an object can be
treated relative to the sensor’s resolution. A rough rule of thumb is that the scale of
image objects to be detected must be significantly bigger than the scale of image
noise relative to texture. This ensures that subsequent object oriented image proc-
essing is based on meaningful image objects. Therefore, among the most important
characteristics of a segmentation procedure is the homogeneity of the objects. Good
results are expected only if contrasts are treated consistently (Baatz/Schäpe 2000).
Furthermore, the resulting segmentation should be reproducible and universal to
permit application to a large variety of data. Baatz and Schäpe argue that multi-
resolution image processing based on texture and utilisation of fractal algorithms
can alone fulfil all main requirements at once. Their ‘fractal net evolution approach’
uses local mutual best-fit heuristics to find the least heterogeneous merge in a local
vicinity following the gradient of the best-fit. Furthermore, their algorithm can be
applied with pure spectral heterogeneity or with a mix of spectral and form hetero-
geneity.

Uncertainties in segmentation and classification
Uncertainty includes any known or unknown error, ambiguity or variations caused
by inherent properties or the interaction of various aspects constituting the system.
Thus, uncertainty may arise from such elements as measurement error, inherent
variability, instability, conceptual ambiguity, over-abstraction etc. Uncertainty is
virtually inevitable in the decision making process in GIS and has been extensively
studied since the late 80s (Goodchild/Gopal 1989). In the context of this paper, we
focus on the aspect of a system which is either certain due to its variability or cannot
be objectively quantified for likely occurring errors. Several elements lead to uncer-
tainty in images: Firstly, the accuracy of satellite data itself and atmospheric condi-
tions; secondly, the inherent inaccuracy of ground data elements and categories due
to complexity, soft transitions and semantic differences between different rules in
the classification process of the surface’s characteristics.

Inherent uncertainties in the categories imply that there is uncertainty in the de-
scription of the objects. Cheng (1999) distinguishes four aspects which cause un-
certainty in the image definition according to Plewe (1997), namely fuzziness, mul-
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tiple criteria, spatially incomplete definitions and time incoherence. Gahegan and
Ehlers (1999) discussed the uncertainties in the procedure of image classification.
They used four models to represent data in four different forms: field model, image
model, thematic model, object model. A data set in each model may be described by
a number of abstract properties, i.e. data value, spatial extent, temporal extent and
lineage information, and uncertainties can be associated with these aspects. The un-
certainty associated with the mapping result is the uncertainty that already resides in
one data form plus the uncertainty associated with the data transformation. For ex-
ample, through image capture a data value may be affected by measurement error or
quantification; grid processes or relief distortion may force a change in spatial loca-
tion. Therefore, uncertainty of objects comprises uncertainty in the image plus un-
certainty associated with the segmentation and classification. The work of Gahegan
and Ehlers (1999) provides a general conceptual framework to understand and trace
uncertainty in the object generation process, where it originates from and what ef-
fects it has. However, as Cheng (1999) points out, the actual effects of transforma-
tion have not been analytically measured. There is a strong need to investigate un-
certainties in object generation. As we are – from a ‘pure mathematical’ point of
view – not even able to define the ‘ideal’ objects to extract, we strongly recommend
the use of multi-resolution segmentation: the meaningfulness and interpretability of
several layers of objects in different dimensions is analysed later within an object-
oriented classification process utilising semantic knowledge.

4. Per-Pixel Classification vs. Context-Based Classification
To compare ‘traditional’ per-pixel classifications and context-based classifications, a
study area in the German-Austrian border region close to the city of Salzburg was
selected, including parts of Berchtesgaden National Park (Germany). Data included
Landsat TM imagery, SPOT pan and various GIS data layers. The software used for
pixel-based classification is Erdas ImagineTM 8.4 and multiresolution segmentation
is carried out with eCognitionTM for object oriented image analysis (Delphi2 Crea-
tive Technologies, Munich). eCognitionTM is a new integrated software environment
for multiresolution segmentation and object-oriented fuzzy-rule classification. Using
a beta version of the programme, multiresolution segmentation was successfully ap-
plied to several different problems in the fields of remote sensing, image analysis in
medicine and structure analysis (Baatz/Schäpe 2000, Buck et al. 1999, de Kok et al.
1999). A visual impression of the resulting differences is given in Fig. 1. The object-
based approach delineates “naturally looking” configurations rather than pixel-
dominated pattern. To test the results, an accuracy assessment was performed util-
ising detailed land cover data derived from interpretation of aerial photographs at
1:10,000 scale. Per-pixel classification results in the well-known salt and pepper ef-
fect. Single pixels are classified differently than the surrounding area and homoge-
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nous regions cannot be generated. The only way to smooth the image is to use fil-
ters, which however work without considering the original information. Classifica-
tion based on segmented images won’t show any salt and pepper effect and does not
need any filter operations. Homogeneous regions (image objects) are built up first,
and then the classification is applied to these objects.

Figure 1
Results obtained from ‘traditional’ pixel-based classification (top) vs. segmentation-

based objects (bottom). See text for explanation.

5. Integration of GIS and Remote Sensing
GIS and Remote Sensing have a rather long history as unequal siblings in the geoin-
formation family and never really managed to move onto common platforms. Com-
mercially available software systems clearly show their respective backgrounds in
vector vs. raster/image technologies, and usually attempt to integrate some basic
functionality from the 'other' world. The main difference is in the core data models,
but beyond that remote sensing analyses spatial information by starting from the
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complete picture and trying to dissect the image into homogeneous 'objects', while
(vector) GIS builds a representation of spatial reality from bottom up.

Remote sensing was always seen as an attractive means to overcome the spatial
data bottleneck of GIS, delivering continuous data coverage over large areas.
Mostly, the crossing over from (multi-)spectral to thematic data was handled as a
one-way route using remote sensing as a data generation technology before applying
the analytical capabilities of raster or vector GIS. On a conceptual level, two distinct
theories were employed as foundations: (quasi-)continuous spatial observation of
radiometric characteristics, e.g. looked upon as "fields", has been contrasted with the
dual geo-relational and more recently the object-relational models of representing
entities by vector objects.

The issue of closer integration of these two different strands of geo-spatial tech-
nologies has been around for quite a while. This mostly meant that data as well as
functionality from both backgrounds were to be available in single hybrid software
systems, often with a strong emphasis on back-and-forth data conversion routines. It
was thus acknowledged that for many application domains, the holistic image view
and the analytical object view would complement each other. Integration was lim-
ited though: even simple tasks like the delineation of samples or training areas in
images with objects from a vector dataset, or the spectral description of a parcel by
aggregating corresponding image values often required and still requires tedious
conversion routines. Most success has probably been achieved through loose cou-
pling of dedicated systems, as can be observed from the mutual integration of key
routines in the ESRI and ERDAS software families.

Now, we are set to carry the integration one or more significant steps further:
software technology has evolved to a point where tighter integration of components
has become feasible on a large scale, and the standardization and open systems
movements have provided us with an application-oriented integrated conceptual
foundation for geo-spatial information processing (see www.opengis.org). New
technologies are emerging now which, instead of combining functions from both
ends, directly straddle the (former) borderline between remote sensing / image proc-
essing and object-relational GIS. This is probably not as special from a technology
point of view but much more from a conceptual perspective: radiometric responses
and traditional image processing tools are being used side by side with GI functions
describing spatial distance, topological characteristics and thematic values. With all
of these observations being available in a seamless environment, the 'integration' de-
bate is no more about 'easily going back and forth', but clearly about bringing these
two geoinformation heritage lines together.

The benefits of these developments are only beginning to show and it will take
some time to modify our somewhat entrenched frames of mind to adjust: remote
sensing and GIS integration is no longer just about vectors-on-top-of-images or easy
mutual conversion, but about integrated views from spectral as well as thematic per-
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spectives. These different domains and scales of empirical measurement are joined
to provide a better picture of reality, thus opening up entirely new ways of generat-
ing spatial knowledge. Examples in this paper provide but a small glimpse of novel
insights!

6. New Perspectives for Environmental Applications
Remote sensing is however not as widely used for natural resource management as
predicted 20 years ago or as often claimed by the field’s experts and data providers.
One of the frequently stated reasons for this is the lack of expertise among the users
to extract information available in remotely sensed imagery in support of their en-
deavours (Skidmore 1999). This stumbling block causes headaches for space agen-
cies and industry when considering the emerging markets for image data as pre-
dicted for fields such as agriculture, insurance, intergovernmental agencies and in-
ternational treaties (DGLR, BMBF 2000; Skidmore 1999). At a time when GIS con-
cepts and software penetrate the workplace to the level of common office software
packages, remote sensing sales and revenues do not follow at the same pace.

Looking at environmental monitoring, the major tasks are either to update exist-
ing geo-information (observing changes at t1 in regard to conditions recorded at t0)
or to delineate land cover features in areas which haven’t been mapped before
(baseline data at t0). In both cases knowledge about the nature of boundaries be-
tween adjacent objects (sharp or fuzzy) and their specific properties (texture, neigh-
bourhood, relationship) exists, though at various degrees of certainty. The method-
ology of multi-resolution image segmentation as described above offers the possi-
bility to reproduce the boundaries across different data sets (e.g. medium and high
resolution imagery, regional to local) and allow for a transparent inspection of re-
sults. To translate spectral characteristics of image objects to real-world features, the
object-oriented classification approach uses semantics based on descriptive assess-
ment and knowledge, in other words it incorporates the wisdom of the user.

How the implementation of the methodology could benefit remote sensing and
GIS users will be shown for two applications. Where agricultural monitoring focuses
on controlling compliance with regulations governing subsidies, the shift of field
boundaries (area estimates) and the nature of the crops are of main concern. For ex-
ample, the European Community initiated a project to develop an objective method-
ology which could be applied in all member states and be uniformly credible. One of
the main aims was to obtain estimates of crop yields per unit area so that the total
production could be estimated (Taylor et al. 1997). Even though the combination of
ground surveys and remote sensing improves the overall accuracy of agricultural
statistics, the authors conclude that area estimates based on pixel-based classifica-
tion methods fail to deal satisfactorily with field boundaries. That the delineation of
boundaries inside fixed parcels and resulting crop area estimates can be successfully
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improved by rule-based object-oriented classification was already demonstrated by
Janssen (1993) for agricultural land use in the Netherlands.

In regions such as the southern part of Africa where reliable statistics on yearly
crop yields are missing (Fig. 2), the primary task is to carry out segmentation of ag-
ricultural land across different farming schemes, e.g. large-scale commercial, small-
scale commercial and communal farms (Gomez & Gallego 2000). Applying the
above-mentioned methodology while using new high-resolution imagery data could
certainly reduce the relatively high standard errors per unit area obtained during the
first survey.

Figure 2: Crop area estimation in Zimbabwe. a. Landsat TM, upper right: large scale
commercial farms, upper-left: small-scale commercial farms, lower left: communal
farmland. b. aerial photograph (white box in a.). Courtesy of S. Gomez, ERSI, Harare

The second example concerns the role of data in environmental conflict resolution.
At the root of conflicts such as access to natural resources we often find that the
relevance of the available data or their interpretation is debated among the conflict-
ing parties (Moore 1996). An important factor for successful mediation is the ability
of the parties to agree on a common data model from where information is derived
in a transparent way to allow the development of options and the assessment of im-
pacts from possible decisions/solutions. In this process, the image could serve as the
unbiased base; the conflicting parties jointly develop the rules for the translation into
information and explore options for sustainable solutions by simulations based on
well-defined meaningful objects.

a b
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7. Conclusions
Satellite remote sensing has made tremendous progress over the last three decades.
However, the applicability of image processing is often limited by spatial resolution.
While some users still argue for steadily increasing resolutions it becomes more ob-
vious that progress in environmental applications is hampered by the quality of
spectral information that can be reliably extracted from remotely sensed data. In this
paper, it was argued that the whole conceptual framework based on a pixel as the
smallest unit of consideration is limited as long as spatial neighbourhood and prox-
imity are not considered. Enormous efforts are invested to classify pixels accurately,
including soft or fuzzy classification methods, sub-pixel approaches and spectral un-
mixing. These methods focus mostly on the well-known phenomenon of the ‘mixed
pixel’. This term implies that the scale of observation is inappropriate and does not
match the scale of variation in the landscape. By increasing spatial resolution this
phenomenon does not disappear. One can observe that the percentage of pixels re-
garded as ‘real mixed pixels’, e.g. falling between two adjacent fields, is actually
decreasing. At the same time, a new problem appears: Areas which are relatively
homogeneous at a 30 m resolution (Landsat TM) exhibit variation at 4 m resolution
(multi-spectral IKONOS). Suddenly gaps within a natural forest appear because
small islands in the coverage are now represented by several pixels.

Therefore it is argued that while the importance of the mixed pixel problem is de-
clining, the consistency of groups of pixels is becoming more important. Concepts
of adjacency and context of information are becoming more important. It is expected
that the software industry will react to these demands, and first operational products
in ‘standard computing environments’ are becoming available today. It is further ex-
pected that these developments will trigger the development of integrated
GIS/remote sensing environments leading to a new dimension of joint interpretation.
These tools will facilitate all levels of processing remotely sensed raster data, from
pixel-based to per-parcel approaches and context-based approaches in an object-
oriented environment. This could subsequently lead to a full implementation of spa-
tial operators (‘GIS-operators’) in remote sensing software.

Multi-resolution segmentation produces highly homogeneous segments at arbi-
trary resolution and from arbitrary image data. This allows application of this seg-
mentation technique to different types of image data and problems. Object-based
classification enables the user to define complex rules based on spectral characteris-
tics and on inherent spatial relationships. With the object-oriented approach, com-
plex semantics can be developed based on physical parameters and knowledge about
relationships. Objects can be defined and classified by the structure and behaviour of
similar objects. Inheritance provides natural classification strategies for different
kinds of objects and classes and allows for the communality of objects to the full
advantage in modelling and constructing object systems.
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